带有通用型操作的系统

SICP 中文版P136:在设计大型系统时, 处理好一大批相互有关的类型而同时又能保持模块性,是一个非常困难的问题。

本文中的代码是完全体,可运行,书本上的操作全部验证通过;

包括 SICP 第二章第五节文本部分介绍的特性,及习题部分要求加入的新特性(除了 2.92);

版本记录中包含此代码的文件是按照习题顺序逐次加入特性并提交的,需要按习题对照代 码及功能查看个人 github 页面的提交记录并检出:systems-with-generic-operations

运行程序的还需要 SICP 第三章 3.24 的习题代码,没有的请去上面的链接里往上翻。

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
(load "../chapter3/3.24.scm")

;; make a type-operation table
(define tb (make-table equal?))
(define get (tb 'lookup-proc))
(define put (tb 'insert-proc!))
;; table done

;; overall general procedures

;; follow ex 2.78
(define (attach-tag type-tag contents)
  (if (number? contents)
      contents
      (cons type-tag contents)))

(define (type-tag datum)
  (cond ((number? datum) 'scheme-number)
	((pair? datum) (car datum))
	(else
	 (error "Bad tagged datum -- CONTENTS" datum))))

(define (contents datum)
  (cond ((number? datum) datum)
	((pair? datum) (cdr datum))
	(else
	 (error "Bad tagged datum -- CONTENTS" datum))))
;; 2.78

;; follow 2.81
;; (define (apply-generic op . args)
;;   (let ((type-tags (map type-tag args)))
;;     (let ((proc (get op type-tags)))
;;       (if proc
;; 	  (apply proc (map contents args))
;; 	  (if (= (length args) 2)
;; 	      (let ((type1 (car type-tags))
;; 		    (type2 (cadr type-tags))
;; 		    (a1 (car args))
;; 		    (a2 (cadr args)))
;; 		(if(equal? type1 type2)
;; 		   (error "No method for these types"
;; 			  (list op type-tags))
;; 		   (let ((t1->t2 (get-coercion type1 type2))
;; 			 (t2->t1 (get-coercion type2 type1)))
;; 		     (cond (t1->t2
;; 			    (apply-generic op (t1->t2 a1) a2))
;; 			   (t2->t1
;; 			    (apply-generic op a1 (t2->t1 a2)))
;; 			   (else
;; 			    (error "No method for these types"
;; 				   (list op type-tags))))))
;; 		(error "No method for these types"
;; 		       (list op type-tags))))))))
;; 2.81


;; follow ex 2.84
;; types-tower
(define (install-types-tower)
  (put 'level 'scheme-number 1)
  (put 'level 'rational 2)
  ;; real package is not implemented
  (put 'level 'real 3)
  (put 'level 'complex 4)
  'done)

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (if proc
	  ;; follow 2.85
	  ;; (let ((res (apply proc (map contents args))))
	  ;;   (if (or (eq? op 'raise) (eq? op 'equ?) (eq? op '=zero?))
	  ;; 	res
	  ;; 	(drop res)))
	  ;; 2.85
	  (apply proc (map contents args))
	  (if (= (length args) 2)
	      (let ((type1 (car type-tags))
		    (type2 (cadr type-tags))
		    (a1 (car args))
		    (a2 (cadr args)))
		(cond ((equal? type1 type2)
		       (error "No method for these types"
			      (list op type-tags)))
		      ((< (level a1) (level a2))
		       (apply-generic op (raise a1) a2))
		      (else (apply-generic op a1 (raise a2)))))
	      (error "No method for these types"
		     (list op type-tags)))))))
;; 2.84

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
;; follow ex 2.79
(define (equ? x y)(apply-generic 'equ? x y))
;; 2.79
;; follow ex 2.80
(define (=zero? x) (apply-generic '=zero? x))
;; 2.80
;; follow 2.83
(define (raise number) (apply-generic 'raise number))
;; 2.83
;; follow 2.84
(define (level x) (get 'level (type-tag x)))
;; 2.84
;; follow ex 2.85
(define (project x) (apply-generic 'project x))
(define (drop x)
  (if (number? x)
      x
      (let ((a (project x)))
	(if (equ? (raise a) x)
	    (drop a)
	    x))))
;; 2.85
;; follow ex 2.86
(define (sine x) (apply-generic 'sine x))
(define (cosine x) (apply-generic 'cosine x))
(define (arctan x) (apply-generic 'arctan x))
(define (exp x y) (apply-generic 'exp x y))
;; 2.86
;; follow ex 2.87
(define (negative n)
  (apply-generic 'negative n))
;; 2.87
;; follow ex 2.93 & 2.94
(define (greatest-common-divisor a b)
  (apply-generic 'gcd a b))
;; 2.93 & 2.94
;; follow ex 2.97
(define (reduce n d) (apply-generic 'reduce n d))
;; 2.97


;; helper functions
(define (square x) (mul x x))
(define (sqr x) (exp x 0.5))
;; built-in gcd


;; scheme-number package
(define (install-scheme-number-package)
  (define (tag x)
    (attach-tag 'scheme-number x))

  ;; follow ex 2.79
  (define (equ-number? n1 n2)
    (= n1 n2))
  (put 'equ? '(scheme-number scheme-number) equ-number?)
  ;; 2,79
  ;; follow ex 2.80
  (define (=zero-number? n) (= n 0))
  (put '=zero? '(scheme-number) =zero-number?)
  ;; 2.80
  ;; follow 2.83
  (define (scheme-number->rational number)
    (make-rational number 1))
  (put 'raise '(scheme-number) scheme-number->rational)
  ;; 2.83
  ;; follow 2.85
  (define (drop-scheme-number x) x)
  (put 'drop '(scheme-number) drop-scheme-number)
  ;; 2.85
  ;; follow ex 2.93 & 2.94
  (define gcd-scheme-number gcd)
  (put 'gcd '(scheme-number scheme-number)
       (lambda (s1 s2) (tag (gcd-scheme-number s1 s2))))
  ;; 2.93 & 2.94
  ;; follow ex 2.97
  (define (reduce-integers n d)
    (let ((g (greatest-common-divisor n d)))
      (list (div n g) (div d g))))
  ;; 2.97
  (put 'reduce '(scheme-number scheme-number)
       (lambda (n d) (map tag (reduce-integers n d))))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  ;; follow ex 2.86
  (put 'sine '(scheme-number) (lambda (x) (tag (sin x))))
  (put 'cosine '(scheme-number) (lambda (x) (tag (cos x))))
  (put 'arctan '(scheme-number scheme-number) (lambda (y x) (tag (atan y x))))
  (put 'exp '(scheme-number scheme-number) (lambda (x y) (tag (expt x y))))
  ;; 2.86
  ;; follow 2.88
  (define (negative-scheme-number n)
    (make-scheme-number (- n)))
  (put 'negative '(scheme-number) negative-scheme-number)
  ;; 2.88

  'done)

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

;; rational package
(define (install-rational-package)
  ;; internal procedures
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  ;; (define (make-rat n d)
  ;;   ;; follow ex 2.93 & 2.94
  ;;   (let ((g (greatest-common-divisor n d)))
  ;;     (cons (div n g) (div d g))))
  ;; follow ex 2.97
  (define (make-rat n d)
    (let ((simple (reduce n d)))
      (cons (car simple) (cadr simple))))
  ;; 2.97
  ;; 2.93 & 2.94
  (define (add-rat x y)
    (make-rat (add (mul (numer x) (denom y))
		   (mul (numer y) (denom x)))
	      (mul (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (sub (mul (numer x) (denom y))
		   (mul (numer y) (denom x)))
	      (mul (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (mul (numer x) (numer y))
	      (mul (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (mul (numer x) (denom y))
	      (mul (denom x) (numer y))))
  ;; follow ex 2.79
  (define (equ-rational? r1 r2)
    (let ((product1 (* (numer r1) (denom r2)))
	  (product2 (* (denom r1) (numer r2))))
      (= product1 product2)))
  (put 'equ? '(rational rational) equ-rational?)
  ;; 2.79
  ;; follow ex 2.80
  (define (=zero-rational? r)
    (= (numer r) 0))
  (put '=zero? '(rational) =zero-rational?)
  ;; 2.80
  ;; follow 2.83
  ;; note that we do not implement a real package
  ;; (define (rational->real number)
  ;;   (make-real (/ (numer number) (denom number))))
  ;; (put 'raise '(rational) rational->real)
  ;; 2.83
  ;; follow 2.85
  (define (project-rational x)
    (make-scheme-number (round (/ (numer x) (denom x)))))
  (put 'project '(rational) project-rational)
  (define (drop-rational x)
    (let ((a (project x)))
      (if (equ? (raise a) x)
	  a
	  x)))
  (put 'drop '(rational) drop-rational)
  ;; 2.85
  ;; follow 2.88
  (define (negative-rational n)
    (make-rational (negative (numer n)) (denom n)))
  (put 'negative '(rational) negative-rational)
  ;; 2.88

  ;; interface to rest of the system
  (define (tag x) (attach-tag 'rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  ;; follow ex 2.86
  ;; assume that there is a way of computing numer and denom from real number(*.*)
  ;; calls get_numer_denom, which returns a numer-denom pair
  ;; Alternative:
  ;; if not strictly stricted, sine/cosine/arctan/exp of rational could return scheme number;
  ;; just replace (tag (get_numer_denom)) with (make-scheme-number)
  ;; (put 'sine '(rational) (lambda (x) (tag (get_numer_denom (sine (/ (numer x) (denom x)))))))
  ;; (put 'cosine '(rational) (lambda (x) (tag (get_numer_denom (cosine (/  (numer x) (denom x)))))))
  ;; (put 'arctan '(rational rational)
  ;;      (lambda (y x) (tag (get_numer_denom
  ;; 		      (arctan (/ (numer y) (denom x)) (/ (numer x) (denom x)))))))
  ;; (put 'exp '(rational rational)
  ;;      (lambda (x y) (tag (get_numer_denom
  ;; 		      (exp (/ (numer x) (denom x)) (/ (numer y) (denom y)))))))
  ;; 2.86
  'done)

(define (make-rational n d)
  ((get 'make 'rational) n d))

;; complex package
(define (install-complex-package)
  ;; imported procedures from rectangular and polar packages
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  (define (make-from-mag-ang r a)
    ((get 'make-from-mag-ang 'polar) r a))

  ;; internal procedures
  (define (add-complex z1 z2)
    (make-from-real-imag (add (real-part z1) (real-part z2))
			 (add (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (sub (real-part z1) (real-part z2))
			 (sub (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (mul (magnitude z1) (magnitude z2))
		       (add (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (div (magnitude z1) (magnitude z2))
		       (sub (angle z1) (angle z2))))
  ;; follow ex 2.79
  (define (equ-complex? c1 c2)
    (let ((real1 (real-part c1))
	  (imag1 (imag-part c1))
	  (real2 (real-part c2))
	  (imag2 (imag-part c2)))
      (and (= real1 real2) (= imag1 imag2))))
  (put 'equ? '(complex complex) equ-complex?)
  ;; 2.79
  ;; follow ex 2.80
  (define (=zero-complex? c)
    (let ((real (real-part c))
	  (imag (imag-part c)))
      (and (= real 0) (= imag 0))))
  (put '=zero? '(complex) =zero-complex?)
  ;; 2.80
  ;; follow ex 2.85
  ;; need real package
  ;; (define (project-complex x) (make-real (real-part x)))
  ;; (put 'project '(complex) project-complex)
  ;; (define (drop-complex x)
  ;;   (let ((a (project x)))
  ;;     (if (equ? (raise a) x)
  ;; 	  (drop a)
  ;; 	  x)))
  ;; (put 'drop '(complex) drop-complex)
  ;; 2.85
  ;; follow ex 2.88
  (define (negative-complex n)
    (make-complex-from-real-imag (negative (real-part n)) (negative (imag-part n))))
  (put 'negative '(complex) negative-complex)
  ;; 2.88

  ;; interface to rest of the system
  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))
  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'complex
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

;; rectangular-package for complex package
(define (install-rectangular-package)
  ;; internal procedures
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqr (add (square (real-part z))
	      (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (make-from-mag-ang r a)
    (cons (mul r (cosine a)) (mul r (sine a))))

  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'make-from-real-imag 'rectangular
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

;; polar-package for complex package
(define (install-polar-package)
  ;; internal procedures
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (mul (magnitude z) (cosine (angle z))))
  (define (imag-part z)
    (mul (magnitude z) (sine (angle z))))
  (define (make-from-real-imag x y)
    (cons (sqr (add (square x) (square y)))
	  (arctan y x)))
  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))

(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))
(define (make-complex-from-mag-ang r a)
  ((get 'make-from-mag-ang 'complex) r a))

;; follow ex 2.89 & 2.90
;; install common polynomial term package
(define (install-poly-term-package)
  ;; procedures kept same
  (define (make-term order coeff) (list order coeff))
  (define (order term) (car term))
  (define (coeff term) (cadr term))
  ;; tag
  (define (tag term)
    (attach-tag 'polynomial-term term))
  ;; put
  (put 'make 'polynomial-term
       (lambda (x y) (tag (make-term x y))))
  (put 'order '(polynomial-term) order)
  (put 'coeff '(polynomial-term) coeff)
  'done)
(define (make-term x y)
  ((get 'make 'polynomial-term) x y))
(define (order x)
  (apply-generic 'order x))
(define (coeff x)
  (apply-generic 'coeff x))

(define (install-dense-terms-package)
  ;; procedures about dense terms...
  (define (tag terms)
    (attach-tag 'polynomial-dense terms))
  (define (first-term-d term-list)
    (make-term (- (length term-list) 1) (car term-list)))
  (define (rest-terms-d term-list) (cdr term-list))
  (define (empty-termlist-d? term-list) (null? term-list))
  (define (adjoin-term-d term term-list)
    (cond ((=zero? (coeff term)) term-list)
	  ((equ? (order term) (length term-list))
	   (cons (coeff term) term-list))
	  ((> (order term) (length term-list))
	   (adjoin-term-d term (cons 0 term-list))))) ;
  (define (negative-d terms)
    (if (empty-termlist-d? terms)
	terms
	(let ((first (car terms)))
	  (cons (negative first)
		(negative-d (rest-terms-d terms))))))
  ;; follow ex 2.96
  (define (coeffs-d terms)
    (cond ((empty-termlist-d? terms) '())
	  ((equ? (car terms) 0) (coeffs-d (cdr terms)))
	  (else (cons (car terms) (coeffs-d (cdr terms))))))
  (put 'coeffs '(polynomial-dense) coeffs-d)
  ;; 2.96
  (put 'negative '(polynomial-dense)
       (lambda (x) (tag (negative-d x))))
  (put 'first-term '(polynomial-dense)
       (lambda (x) (first-term-d x)))
  (put 'empty-termlist? '(polynomial-dense) empty-termlist-d?)
  (put 'rest-terms '(polynomial-dense)
       (lambda (x) (tag (rest-terms-d x))))
  (put 'adjoin-term 'polynomial-dense
       (lambda (x y) (tag (adjoin-term-d x y))))
  (put 'make 'polynomial-dense (lambda (t) (tag t)))
  'done)

(define (make-dense-terms terms)
  ((get 'make 'polynomial-dense) terms))

(define (install-sparse-terms-package)
  ;; procedures about sparse terms...
  (define (tag terms)
    (attach-tag 'polynomial-sparse terms))
  (define (first-term-s term-list) (car term-list))
  (define (adjoin-term-s term term-list)
    (if (=zero? (coeff term))
	term-list
	(cons term term-list)))
  (define (rest-terms-s term-list) (cdr term-list))
  (define (empty-termlist-s? term-list) (null? term-list))
  (define (negative-s terms)
    (if (empty-termlist-s? terms)
	terms
	(let ((first (first-term-s terms)))
	  (adjoin-term-s (make-term
			  (order first)
			  (negative (coeff first)))
			 (negative-s (rest-terms-s terms))))))
  ;; follow ex 2.96
  (define (coeffs-s terms)
    (map (lambda (t) (coeff t)) terms))
  (put 'coeffs '(polynomial-sparse) coeffs-s)
  ;; 2.96
  (put 'negative '(polynomial-sparse)
       (lambda (x) (tag (negative-s x))))
  (put 'first-term '(polynomial-sparse)
       (lambda (x) (first-term-s x)))
  (put 'empty-termlist? '(polynomial-sparse) empty-termlist-s?)
  (put 'rest-terms '(polynomial-sparse)
       (lambda (x) (tag (rest-terms-s x))))
  (put 'adjoin-term 'polynomial-sparse
       (lambda (x y) (tag (adjoin-term-s x y))))
  (put 'make 'polynomial-sparse (lambda (t) (tag t)))
  'done)
(define (make-sparse-terms terms)
  ((get 'make 'polynomial-sparse) terms))

(define (first-term x)
  (apply-generic 'first-term x))

(define (adjoin-term x y)
  ((get 'adjoin-term (type-tag y)) x (contents y)))

(define (negative x)
  (apply-generic 'negative x))

(define (empty-termlist? x)
  (apply-generic 'empty-termlist? x))

(define (rest-terms x)
  (apply-generic 'rest-terms x))

(define (make-terms t terms)
  ((get 'make t)
   (if (equal? t 'polynomial-sparse)
       terms
       (map coeff terms))))
;; 2.89 & 2.90
;; follow 2.96
(define (coeffs t)
  (apply-generic 'coeffs t))
;; 2.96

;; polynomial-package
(define (install-polynomial-package)
  ;; internal procedures
  ;; representation of poly
  (define (make-poly variable term-list)
    (cons variable term-list))
  (define (variable p) (car p))
  (define (term-list p) (cdr p))
  (define (variable? x) (symbol? x))
  (define (same-variable? v1 v2)
    (and (variable? v1) (variable? v2) (eq? v1 v2)))

  ;; terms
  (define (add-terms L1 L2)
    (cond ((empty-termlist? L1) L2)
	  ((empty-termlist? L2) L1)
	  (else
	   (let ((t1 (first-term L1)) (t2 (first-term L2)))
	     (cond ((> (order t1) (order t2))
		    (adjoin-term
		     t1 (add-terms (rest-terms L1) L2)))
		   ((< (order t1) (order t2))
		    (adjoin-term t2 (add-terms L1 (rest-terms L2))))
		   (else
		    (adjoin-term
		     (make-term (order t1)
				(add (coeff t1) (coeff t2)))
		     (add-terms (rest-terms L1)
				(rest-terms L2)))))))))
  (define (mul-terms L1 L2)
    (if (empty-termlist? L1)
	L1
	(add-terms (mul-term-by-all-terms (first-term L1) L2)
		   (mul-terms (rest-terms L1) L2))))
  (define (mul-term-by-all-terms t1 L)
    (if (empty-termlist? L)
	L
	(let ((t2 (first-term L)))
	  (adjoin-term
	   (make-term (add (order t1) (order t2))
		      (mul (coeff t1) (coeff t2)))
	   (mul-term-by-all-terms t1 (rest-terms L))))))
  ;; follow ex 2.91
  (define (div-terms L1 L2)
    (if (empty-termlist? L1)
	(list L1 L1)
	(let ((t1 (first-term L1))
	      (t2 (first-term L2)))
	  (if (> (order t2) (order t1))
	      (list (make-terms (type-tag L1) '()) L1)
	      (let ((new-c (div (coeff t1) (coeff t2)))
		    (new-o (sub (order t1) (order t2))))
		(let ((rest-of-result
		       (div-terms
			(add-terms L1
				   (negative (mul-term-by-all-terms
					      (make-term new-o new-c)
					      L2)))
			L2)))
		  (list (adjoin-term (make-term new-o new-c)
				     (car rest-of-result))
			(cadr rest-of-result))))))))
  ;; follow ex 2.96
  (define (pseudoremainder-terms a b)
    (let ((f1 (first-term a))
	  (f2 (first-term b)))
      (let ((o1 (order f1))
	    (o2 (order f2))
	    (c (coeff f2)))
	(let ((constant (exp c (+ 1 o1 (- o2)))))
	  (let ((term (make-term 0
				 constant)))
	    (cadr (div-terms
		   (mul-term-by-all-terms term a)
		   b)))))))
  (define (gcd-terms-coeff l)
    (define (recursive l)
      (cond ((= 2 (length l))
	     (greatest-common-divisor (car l) (cadr l)))
	    ((= 1 (length l)) (car l))
	    ((null? l) 0)
	    (else (greatest-common-divisor
		   (car l)
		   (recursive (cdr l))))))
    (recursive l))
  (define (gcd-terms a b)
    (if (empty-termlist? b)
	(let ((coeffs-gcd (gcd-terms-coeff (coeffs a))))
	  (car (div-terms
		a
		(make-terms (type-tag a)
			    (list (make-term 0 coeffs-gcd))))))
	(gcd-terms b (pseudoremainder-terms a b))))
  ;; 2.96

  ;; follow 2.97
  (define (reduce-terms n d)
    (define (compute-constant a b c)
      (let ((af (first-term a))
	    (bf (first-term b))
	    (cf (first-term c)))
	(let ((c (coeff af))
	      (o1 (max (order bf) (order cf)))
	      (o2 (order af)))
	  (exp c (+ 1 o1 (- o2))))))
    (define (simplify a b)
      (let ((g (gcd-terms-coeff (append (coeffs a) (coeffs b)))))
	(let ((divider (make-terms (type-tag a) (list (make-term 0 g)))))
	  (list (car (div-terms a divider)) (car (div-terms b divider))))))
    (let ((g (gcd-terms n d)))
      (let ((constant (compute-constant g n d)))
	(let ((mn (mul-term-by-all-terms (make-term 0 constant) n))
	      (md (mul-term-by-all-terms (make-term 0 constant) d)))
	  (let ((gn (car (div-terms mn g)))
		(gd (car (div-terms md g))))
	    (simplify gn gd))))))
  (define (reduce-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
	(let ((t1 (term-list p1))
	      (t2 (term-list p2)))
	  (let ((result (reduce-terms t1 t2)))
	    (list (make-poly (variable p1) (car result))
		  (make-poly (variable p1) (cadr result)))))
	(error "Polys not in same variable -- REDUCE-POLY"
	       (list p1 p2))))
  (put 'reduce '(polynomial polynomial)
       (lambda (n d) (map tag (reduce-poly n d))))
  ;; 2.97

  ;; 2.91
  ;; follow ex 2.87
  (define (=zero?-p p)
    (define (recursive terms)
      (if (empty-termlist? terms)
	  #t
	  (let ((first (first-term terms))
		(rest (rest-terms terms)))
	    (if (=zero? (coeff first))
		(recursive rest)
		#f))))
    (recursive (term-list p)))
  (put '=zero? '(polynomial) =zero?-p)
  ;; 2.87

  ;; poly
  ;; follow 2.88
  (define (negative-poly n)
    (make-poly (variable n) (negative (term-list n))))
  (put 'negative '(polynomial)
       (lambda (x) (tag (negative-poly x))))
  (define (sub-poly p1 p2)
    (add-poly p1 (negative-poly p2)))
  (put 'sub '(polynomial polynomial)
       (lambda (x y) (tag (sub-poly x y))))
  ;; 2.88
  (define (add-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
	(make-poly (variable p1)
		   (add-terms (term-list p1)
			      (term-list p2)))
	(error "Polys not in same var -- ADD-POLY"
	       (list p1 p2))))
  (define (mul-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
	(make-poly (variable p1)
		   (mul-terms (term-list p1)
			      (term-list p2)))
	(error "Polys not in same var -- MUL-POLY"
	       (list p1 p2))))
  ;; follow 2.91
  (define (div-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
	(let ((t1 (term-list p1))
	      (t2 (term-list p2)))
	  (let ((result (div-terms t1 t2)))
	    (make-poly (variable p1)
		       (car result))))
	(error "Polys not in same var -- DIV-POLY"
	       (list p1 p2))))
  (put 'div '(polynomial polynomial)
       (lambda (p1 p2) (tag (div-poly p1 p2))))
  ;; 2.91
  ;; follow 2.93 & 2.94
  (define (gcd-poly a b)

    ;; (define (remainder-terms t1 t2)
    ;;   (cadr (div-terms t1 t2)))
    ;; (define (gcd-terms t1 t2)
    ;;   (if (empty-termlist? t2)
    ;; 	  t1
    ;; 	  (gcd-terms t2 (remainder-terms t1 t2))))

    (if (same-variable? (variable a) (variable b))
	(let ((t1 (term-list a))
	      (t2 (term-list b)))
	  (make-poly (variable a) (gcd-terms t1 t2)))
	(error "Polys not in same var -- GCD-POLY"
	       (list a b))))
  (put 'gcd '(polynomial polynomial)
       (lambda (p1 p2) (tag (gcd-poly p1 p2))))
  ;; 2.93 & 2.94

  ;; interface to rest of the system
  (define (tag p) (attach-tag 'polynomial p))
  (put 'add '(polynomial polynomial)
       (lambda (p1 p2) (tag (add-poly p1 p2))))
  (put 'mul '(polynomial polynomial)
       (lambda (p1 p2) (tag (mul-poly p1 p2))))
  (put 'make 'polynomial
       (lambda (var terms) (tag (make-poly var terms))))
  'done)
(define (make-polynomial var terms)
  ((get 'make 'polynomial) var terms))


;; install
(install-types-tower)
(install-scheme-number-package)
(install-rational-package)
(install-rectangular-package)
(install-polar-package)
(install-complex-package)
(install-poly-term-package)
(install-dense-terms-package)
(install-sparse-terms-package)
(install-polynomial-package)